ALG III 3/19/18 Natural Logarithm and Base e

WarmUp: You invest \$1 at a 100% interest rate for one year. You can't remember how often the interest is compounded. You are curious as to whether there is a *maximum* amount of money you could have at the end of the year.

Complete the table.

Conclusions:

Interest is Compounded	<i>n</i> = ?	Amount at the End of One Year
annually		
semiannually		
quarterly		
bimonthly		
monthly		
weekly		
daily		
hourly		
each minute		
each second		

ALG III 3/19/18 Natural Logarithm and Base e

So as *n* gets super huge, the value of $\left(1 + \frac{1}{n}\right)^n$ gets closer and closer, but never exceeds, *e*.

Let's see what impact this has on our Compound Interest equation, and answers our original question.

$$A = P\left(1 + \frac{r}{n}\right)^{n \cdot t}$$

$$A = P\left(1 + \frac{1}{\binom{n}{r}}\right)^{r}$$
Pause here and make sure you believe this is equivalent...
$$A = P\left(\left(1 + \frac{1}{\binom{n}{r}}\right)^{r}\right)^{r \cdot t}$$
Again, pause... same thing?
Now if *n* gets super huge,
$$\left(1 + \frac{1}{\binom{n}{r}}\right)^{r}$$
approaches *e*, and our formula becomes $A = P \cdot e^{r \cdot t}$

Ex#1: You invest \$200 in an account that pays 4.2% annual interest, but you don't know how often it is compounded. What is the most money you could possibly have at the end of 5 years?

ALG III 3/19/18 Natural Logarithm and Base e

Ex#2: Given $f(x) = e^x$

a)	Complete the table and graph	y = f	f(x)
,		/ J	· ·

x	f(x)
-1	
0	
1	
2	

b) On the same axes, graph the inverse. Find the equation of the inverse.

ALG III 3/19/18 Natural Logarithm and Base e Ex#3: Simplify.

a)	$\ln e^8$	b)	$5\log_e e^4$	c)	$e^{2\ln 3}$
,		,	Ur	,	

Ex#4: Solve each equation.

a) $2e^x = 38$ b) $\ln e^{x+8} = 12$

c) $2e^{x-4} + 8 = 12$ d) $5\log_e(x-4) + 3 = 38$

Assignment: pg. 576 #11-15, 27, 33, 39, 43, 45, 47, 48